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Spin Hall effect for polaritons in a transition metal dichalcogenide embedded in a microcavity

Oleg L. Berman,1,2 Roman Ya. Kezerashvili,1,2 and Yurii E. Lozovik3,4

1Physics Department, New York City College of Technology, The City University of New York, Brooklyn, New York 11201, USA
2The Graduate School and University Center, The City University of New York, New York, New York 10016, USA

3Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow, Russia
4MIEM at National Research University Higher School of Economics, Moscow 123458, Russia

(Received 17 October 2018; revised manuscript received 2 February 2019; published 26 February 2019)

The spin Hall effect for polaritons (SHEP) in a transition metal dichalcogenides (TMDC) monolayer
embedded in a microcavity is predicted. We demonstrate that two counterpropagating laser beams incident on
a TMDC monolayer can deflect a superfluid polariton flow due to the generation the effective gauge vector and
scalar potentials. The components of polariton conductivity tensor for both noninteracting polaritons without
Bose-Einstein condensation (BEC) and for weakly interacting Bose gas of polaritons in the presence of BEC
and superfluidity are obtained. It is shown that the polariton flows in the same valley are splitting: the superfluid
components of the A and B polariton flows propagate in opposite directions along the counterpropagating
beams, while the normal components of the flows slightly deflect in opposite directions and propagate almost
perpendicularly to the beams. The possible experimental observation of SHEP in a microcavity is proposed.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDCs) monolayers
such as MoS2, WS2, MoSe2, WSe2, MoTe2, and WTe2 are
characterized by the direct gap in a single-particle spectrum
exhibiting the semiconducting band structure and strong spin-
orbit coupling [1–7]. Significant spin-orbit splitting in the
valence band leads to the formation of two distinct types A
and B excitons [8]. A excitons are formed by spin-up electrons
from the conduction band and spin-down holes from the
valence band, while type B excitons are formed by spin-down
electrons from the conduction band and spin-up holes from
the valence band [7]. When excitons are created optically,
the optical field couples only to the orbital part of the wave
function, while the spin is conserved in optical transitions [9].
In the conduction and valence bands of TMDC, the electron
wave function is given by the linear superposition of p and
d orbitals due to the orbital hybridization [10]. Caused by
coupling to the optical field, the total angular momentum
change between p and d orbitals is 1. The corresponding
change of the total moment is compensated by the photon spin
1 due to conservation of the total angular momentum [10].

Recently, microcavity polaritons, formed by excitons in
TMDCs embedded in a microcavity, attracted the interest of
experimental and theoretical studies. The exciton polaritons,
formed by cavity photons and excitons in MoS2 [11] and
WS2 [12] monolayers, and a MoSe2 monolayer supported by
h-BN layers [13], embedded in a microcavity, were observed
experimentally at room temperature. The exciton polariton
modes formed due to interaction coupling of excitons in
MoS2 and WS2 monolayers and microcavity photons were
studied [14]. In Ref. [15], the phase diagram of polariton
Bose-Einstein condensation (BEC) in a microcavity with an
embedded MoS2 monolayer was presented. An experimen-
tally relevant range of parameters, at which room-temperature

superfluidity of exciton polaritons can be observed in a micro-
cavity with an embedded MoS2 monolayer, was determined
in Ref. [16] in the framework of driven diffusive dynamics,
while in Ref. [17], the phase diagram of polariton condensate,
formed by TMDC excitons coupled to microcavity photons,
was studied theoretically.

Strong spin-orbit coupling in TMDCs can lead to the spin
Hall effect (SHE), which is one of the most essential effects in
spintronics [18,19]. The SHE is the result of generation of a
transverse spin current as a response to a longitudinal applied
electric field that results in spin accumulation of the carriers
with opposite spins at the opposite edges of samples [20–22].
Under applied electric field this transverse spin current can
be generated in the systems with strong SOC due either the
properties of the electron band structure or scattering on the
impurities [20–22].

A method to observe the SHE for cold atoms under light-
induced gauge potentials was proposed in Refs. [23–25]. This
gauge potential is created when two coordinate dependent
laser beams interact with three-level atoms. The vector po-
tential leads to a nonvanishing effective magnetic field, if
at least one of the two light beams has a vortex [23,24]. A
nonvanishing effective magnetic field can be created without
existence of a vortex in a laser beam, if two counterpropagat-
ing and overlapping laser beams with shifted spatial profiles
interact with three-level atoms [26]. The spin Hall effect for
cold atoms can be observed when two counterpropagating
Gaussian laser beams with shifted centers generate a spatially
slowly varying gauge field acting on three-level atoms [27].

The spin Hall effect for excitons (SHEE) in TMDC was
proposed for circularly polarized pumping in Ref. [28], where
the mechanism is based on creation of the gauge vector
and scalar potentials due to the coupling of excitons to two
counterpropagating and overlapping laser beams. The exci-
ton Hall effect (EHE) in TMDC was studied in Ref. [29],
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FIG. 1. Schematic representation of the light-induced spin Hall
effect for polaritons in a TMDC monolayer embedded in a micro-
cavity. The solid and dashed lines with arrows show the directions
of deflected superfluid and normal flows of A and B polaritons,
correspondingly. Two counterpropagating laser beams are shown by
waved lines.

where the exciton flows deflect due to the peculiarities of
internal structure of TMDC for linearly and circularly polar-
ized pumping. The optical spin Hall effect for microcavity
polaritons (OSHEP), formed by excitons in a GaAs quantum
well, embedded in a high-quality GaAs/AlGaAs microcavity,
caused by the polarization dependence of Rayleigh scattering
of light by structural disorder in microcavities, was studied for
linearly polarized pumping [30,31].

In this paper, we predict the spin Hall effect for polari-
tons (SHEP), formed by microcavity photons and excitons in
TMDC materials embedded into a microcavity. The schematic
representation of the light-induced spin Hall effect for micro-
cavity polaritons in a TMDC layer is depicted in Fig. 1 and can
be described as follows. Two Bragg mirrors placed opposite
each other at the antinodes of the confined photonic mode
form a microcavity, and a TMDC layer is embedded parallel
to the Brag mirrors within the cavity. As a result of the laser
pumping the resonant exciton-photon interaction leads to the
Rabi splitting in the excitation spectrum [32,33]. The polari-
tons cloud is formed due to the coupling of excitons created
in a TMDC layer and microcavity photons. The mechanism
of the SHEP is following. Two coordinate-dependent, coun-
terpropagating and overlapping laser beams in the plane of the
TMDC layer interact with a cloud of polaritons. These laser
beams, characterized by Rabi frequencies �1 and �2 produce
the spin-dependent gauge magnetic and electric fields [26,27]
due to strong SOC for blue electrons and holes in TMDC [28].
Excitons forming polaritons in these gauge magnetic and elec-
tric fields form spin-dependent light dressed states [34–36]
due to the interaction with laser beams. Below we show that
the gauge magnetic field splits the A and B polariton flows.
The normal components of the A and B polariton flows slightly
deflect in opposite directions and propagate almost perpendic-
ularly to the counterpropagating beams. In contrast, the super-
fluid components of the A and B polariton flows propagate
in opposite directions along the counterpropagating beams.

Therefore one can observe the light-induced spin Hall effect
for microcavity polaritons, formed by excitons in a TMDC
layer. For the laser pumping frequencies, corresponding to
the resonant excitations of one type of excitons (A or B), the
corresponding excitons together with coupled to them photons
form polaritons, which deflect to only one direction along the
counterpropagating beams. The flow of polaritons, associated
with this spin current, results in the flow of photons, coupled
to excitons in a TMDC layer. Therefore we propose the
method to control photon flows. We are considering the SHEP
in two regimes: noninteracting polaritons with the quadratic
spectrum in a very dilute limit, when the polariton density
is not enough to create BEC at a given temperature and the
limit of higher polariton densities in the presence of BEC and
superfluidity. Also we propose the method to experimentally
observe the superfluidity of microcavity polaritons due to the
spin Hall flow of polaritons.

In our study we assume that the pumping beam is circularly
polarized, and hence the polaritons are formed by excitons
only in one of the valleys: K or −K [9,37]. Below we focus
on formation of polaritons in K valley and an extension to −K
valley is obvious.

The paper is organized in the following way. In Sec. II, we
present the effective Hamiltonian for microcavity polaritons,
formed by cavity photons and TMDC excitons, coupled to
two laser beams, which is producing the gauge vector and
scalar potentials. The tensor of the polariton conductivity,
which is the linear response of the polariton flow on the
scalar gauge field, and the corresponding resistivity tensor for
noninteracting microcavity polaritons in the SHEP regime are
obtained in Sec. III . The conductivity tensor for microcavity
polaritons in the presence of superfluidity in the SHEP regime
is derived in Sec. IV. In Sec. V, we discuss the possibility
to observe the SHEP. The technological applications of the
SHEP in TMDC monolayers are considered in Sec. VI. The
discussion of our results is presented in Sec. VII. Conclusions
follow in Sec. VIII.

II. MICROCAVITY POLARITONS IN THE PRESENCE OF
COUNTERPROPAGATING LASER BEAMS

Let us consider the effective Hamiltonian of polaritons,
formed by TMDC excitons coupled to microcavity photons
in the presence of counterpropagating and overlapping laser
beams. The deflection of polaritons occurs via the action of
the laser beams on the exciton component of the polaritons.
The exciton component of polaritons in a TMDC heterostruc-
ture is coupled to two counterpropagating and overlapping
coordinate dependent infrared laser beams. The coupling of
TMDC excitons to two coordinate dependent laser beams,
moving along the plane of TMDC, results in the gauge vector
and scalar potentials [26,27], acting on the centers of mass of
TMDC excitons [28]. The latter causes the spin Hall effect for
excitons in TMDC.

The Hamiltonian of TMDC polaritons in the presence
of counterpropagating and overlapping laser beams, can be
written as

Ĥ = Ĥexc + Ĥph + Ĥexc-ph + Ĥexc-exc, (1)
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where Ĥexc is the Hamiltonian of excitons in the gauge field
produced by two counterpropagating and overlapping laser
beams, Ĥph is the Hamiltonian of microcavity photons, Ĥexc-ph

is the Hamiltonian of exciton-photon coupling, and Ĥexc-exc is
the Hamiltonian of exciton-exciton interaction.

The Hamiltonian of 2D excitons in the presence of coun-
terpropagating and overlapping laser beams can be presented
as

Ĥexc =
∑

P

εex(P)b̂†
Pb̂P, (2)

where b̂†
P and b̂P are excitonic Bose creation and annihilation

operators obeying Bose commutation relations. In Eq. (2),
εex(P) = Ebg − Eb + ε0(P) is the energy dispersion of a single
exciton in a TMDC layer, where Ebg is the band gap energy,
Eb is the binding energy of an exciton, and ε0(P) is the energy
spectrum of a single exciton in a TMDC coupled to two
infrared, coordinate dependent laser beams. The interaction
of the exciton in a TMDC monolayer with two counterprop-
agating Gaussian laser beams can be represented as the inter-
action with the gauge vector and scalar potentials [28]. We
analyze the Hamiltonian for noninteracting TMDC excitons
coupled to two counterpropagating Gaussian laser beams in
Appendix A. By expanding the gauge vector potential, acting
on excitons, in the linear order with respect to the coordinate,
the constant gauge magnetic field is obtained. The gauge
scalar potential, acting on excitons, is the even function of
the coordinate and, therefore, has no linear order term with
respect to the coordinate, and, therefore, can be omitted. In
this case, ε0(P) can be written as [28]

ε0(P) = (P − Aσ )2

2M
, (3)

where M is the mass of an exciton and Aσ is the gauge vec-
tor potential acting on the exciton component of polaritons,
associated with different spin states of the conduction band
electron, forming an exciton, σ =↑ and ↓.

The Hamiltonian of noninteracting photons in a microcav-
ity has the form [38]

Ĥph =
∑

P

εph(P)â†
PâP, (4)

where â†
P and âP are photonic creation and annihilation Bose

operators. In Eq. (4), εph(P) = (c/ñ)
√

P2 + h̄2π2q2L−2
C is the

spectrum of the microcavity photons, where c is the speed of
light, LC is the length of the cavity, ñ = √

ε is the effective
index of refraction of the microcavity, ε is the dielectric
constant of the cavity, and q is the integer, which represents
the longitudinal mode number.

The Hamiltonian of harmonic exciton-photon coupling is
given by [39]

Ĥexc-ph = h̄�R

∑
P

â†
Pb̂P + H.c. (5)

In Eq. (5), �R is the Rabi splitting constant which represents
the exciton-photon coupling energy and is defined by the
dipole matrix element, corresponding to the transition with
the exciton formation [40] and has different values depending
on the material where polaritons are formed.

Below we consider two regimes: (i) a very dilute system of
noninteracting polaritons when the exciton-exciton interaction
is neglected, i.e., Hexc-exc = 0, and (ii) a weakly interacting
Bose-gas of polaritons characterized by superfluidity, when
exciton-exciton hard core repulsion is taken into account. In
this section, we focus on the regime (i), while the regime (ii) is
discussed in Sec. IV. Assuming Ĥexc-exc = 0 the Hamiltonian
Ĥ can be diagonalized by using the unitary transformation as
presented in Appendix B. Substituting Eq. (B3) into (1), one
obtains the Hamiltonian of lower polaritons [39]:

Ĥ0 =
∑

P

εLP(P) p̂†
P p̂P, (6)

where p̂†
P and p̂P are the Bose creation and annihilation

operators for the lower polaritons. The single-particle lower
polariton spectrum, which one obtains from Eq. (B2) by
substituting (3) and the expression for the spectrum of the
microcavity photons, is given by

εLP(P) = h̄πqL−1
C − |h̄�R| + ε(P), (7)

where ε(P) has the form

ε(P) = 1

2

(
ε0(P) + P2

2mph

)
= 1

2

(
(P − Aσ )2

2M
+ P2

2mph

)
.

(8)
In Eq. (8), mph = h̄πq/((c/ñ)LC ) is the effective mass of
microcavity photons, and it is obtained under the assumption
of small momenta in the first order with respect to the small
parameter α ≡ 1/2(M−1 + (c/ñ)LC/h̄πq)P2/|h̄�R| � 1.

After simple algebraic transformation Eq. (8) can be
rewritten as

ε(P) =
(
P − A(eff)

σ

)2

2Mp
+ V (eff), (9)

where Mp = 2μ, μ = Mmph/(M + mph) is the exciton-photon
reduced mass. In Eq. (9), A(eff)

σ and V (eff) are the effective
vector and scalar potentials, respectively, acting on polaritons,
and are given by

A(eff)
σ = mphAσ

M + mph
, V (eff) = A2

σ

4(M + mph )
. (10)

In Eq. (10), Aσ is the gauge vector potential acting on ex-
citons, obtained in Ref. [28] and given by Eq. (A4). Let us
mention that A(eff)

σ and V (eff) are obtained employing diagonal-
ization of the Hamiltonian Ĥ under assumption Ĥexc-exc = 0
by using the unitary transformation presented in Appendix B.
It follows from Eq. (10) that acting on polaritons effective
gauge scalar potential V (eff), determined by the gauge vector
potential Aσ acting on excitons, depends on y, while the gauge
scalar potential Vσ acting on excitons in the linear order with
respect to y is a constant. Therefore V (eff) leads to nonzero
effective gauge electric field E(eff) acting on polaritons. In
contrast, the gauge electric field acting on excitons is zero in
the linear order with respect to y.

Substituting Eq. (A4) into (10), assuming slowly changing
gauge potential, and keeping only terms, linear with respect
to y, the effective gauge vector and scalar potentials acting on
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the polaritons can be written as

A(eff)
σ = mphησ h̄(|k1| + |k2|)

2(M + mph)

(
1 + y

2l

)
ex,

V (eff) = h̄2(|k1| + |k2|)2

16(M + mph )

(
1 + y

l

)
. (11)

Therefore the effective gauge magnetic B(eff)
σ and electric

fields E(eff) fields acting along z and y axes, respectively, are

B(eff)
σ = ∇R × A(eff)

σ = −ησ h̄mph(|k1| + |k2|)
4l (M + mph)

ez,

E(eff) = −∇RV (eff) = − h̄2(|k1| + |k2|)2

16l (M + mph)
ey. (12)

The analysis of Eqs. (11) and (12) shows that the effec-
tive gauge vector potential and effective magnetic field are
different for A and B polaritons due to the factor η↑ = 1
for an A exciton and η↓ = −1 for a B exciton, while the
effective gauge scalar potential and effective electric field do
not depend on the spin orientation σ . As a result, the effective
gauge magnetic field B(eff)

σ deflects the polaritons consisting
from the excitons with different spin states of charge carriers
(A and B excitons) towards opposite directions. Thus the
system under consideration demonstrates the SHEP. Also as
mentioned above, there is an effective uniform electric field
acting on polaritons, in contrast to absence of such uniform
field for excitons.

Let us mention that the SHEE was proposed for interlayer
excitons in a MoSe2-WSe2 van der Waals heterostructure,
where electrons are located in a MoSe2 monolayer, while
holes are located in a WSe2 monolayer [28]. The interlayer ex-
citons in such heterostructures are characterized by relatively
high lifetime, due to suppression of the electron-hole recom-
bination since electrons and holes are spatially separated in
different monolayers [41,42]. However, the increase of the
exciton lifetime does not essentially influence the lifetime
of polaritons, because the polariton lifetime is determined
by the lifetime of the microcavity photons. The lifetime of
the microcavity photons is much smaller than the lifetime of
excitons, since the microcavity photons leave the microcavity
much faster than electrons and hole recombine. Therefore
one can consider the excitons in a single TMDC monolayer,
embedded in a microcavity, without sufficient decrease of the
polariton lifetime compared with the TMDC van der Waals
heterostructure.

III. RESISTIVITY AND CONDUCTIVITY TENSORS FOR
NONINTERACTING MICROCAVITY POLARITONS IN

THE SHEP REGIME

In this section, we consider the dilute system of nonin-
teracting microcavity polaritons when the concentration n is
too low to form the BEC at given temperature. Applying
the Drude model, one can write the transport equation for
microcavity polaritons, moving in both the effective electric
E(eff) and magnetic B(eff)

σ fields as [43,44]

dP
dt

= E(eff) + v × B(eff)
σ − P

τ
, (13)

where v is the velocity and τ is a scattering time of microcav-
ity polaritons. For a steady state, setting dP/dt = 0, and using
P = Mpv, one obtains

E(eff) = Mp

nτ
j − j × B(eff)

σ

n
, (14)

where the linear polariton flow density is defined as j = nv.
Following Ref. [44], for the resistivity and conductivity

tensors for polaritons moving in effective electric and mag-
netic fields we use the similar definitions. In particular, the
2 × 2 resistivity matrix 
σ can be defined as E(eff) = 
σ j, with
the diagonal ρσxx and ρσyy, and the off-diagonal ρσxy and ρσyx

components known as the Hall resistivity [43] given by

ρσxx = ρσyy = Mp

nτ
, ρσxy = −ρσyx = ησ B(eff)

n
, (15)

where B(eff) is the magnitude of the effective magnetic field
B(eff)

σ .
We define the Hall coefficient RHσ as

RHσ = ρσyx

B(eff)
= −ησ

n
. (16)

The conductivity tensor σ̃σ is defined as the inverse matrix
to the resistivity matrix 
σ . In our case of the Hall conductiv-
ity, the diagonal and off-diagonal components of σ̃σ are given
by

σσxx = σσyy = σ0

1 + ω2
cτ

2
, σσxy = −σσyx = − ησσ0ωcτ

1 + ω2
cτ

2
,

(17)

where σ0 = τn/Mp and ωc = B(eff)/Mp is the cyclotron fre-
quency. As it can be seen from Eqs. (15)–(17), the Hall
resistivity, Hall coefficient, and Hall conductivity depend on
the spin orientation σ . The x and y components of the linear
polariton flow density are defined as jx = −σσxyE (eff) and
jy = −σσyyE (eff).

The dependencies of the cyclotron frequency ωc on the dis-
tance between the centers of the contrpropagated laser beams
for A and B polaritons are presented in Fig. 2. According
to Fig. 2, one can conclude that the cyclotron frequency ωc

decreases with the parameter l , and it is the largest for a WS2

monolayer and the smallest for a MoSe2 monolayer at the
same l . Also, for the same TMDC monolayer ωc is larger for
B polaritons than for A polaritons.

In our calculations and estimations we use the following
parameters. For the microcavity, we use the parameters from
Ref. [13]: ñ = 2.2, LC = 2.3 μm, q = 5, and obtain the ef-
fective mass of microcavity photons: mph = 5.802 × 10−6m0,
where m0 is the mass of an electron. The experimentally
measured values of the Rabi splitting constant h̄�R were
reported as 46 ± 3 [11], 20 [13], and 70 meV [12] for MoS2,
MoSe2, and WS2 monolayers, respectively. We use the sets
of effective masses for electrons and holes in various TMDCs
from Refs. [45,46].

The scattering time of microcavity polaritons is τ (P) =
X −4

P τex(P) ≈ 4τex(P) [47], where XP is defined by Eq. (B4).
The exciton relaxation time τex(P) can be approximated by its
average value τ̄ex = 〈τex(P)〉, which can be obtained from the
exciton mobility μ̃ex = eτ̄ex/M. For a WSe2 monolayer, the
exciton relaxation time was measured as τ̄ex = 260 fs [48].
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FIG. 2. The dependence of the cyclotron frequency ωc on the parameter l , determined by the distance between the counterpropagating
laser beams. Calculations performed for |k1| + |k2| = 3 μm−1. (a) and (b) ωc as a function of l for A and B polaritons, respectively.

Therefore a scattering time of microcavity polaritons can
be estimated as τ = 4τ̄ex = 1.040 ps, which is less than the
polariton lifetime estimated as tens of picoseconds [33]. In
our calculations, we use this value for the scattering time of
microcavity polaritons τ .

According to Ref. [28], for the SHEE the cyclotron fre-
quency is ωc ∼ 1/M, where M is the mass of the exciton.
For the SHEP according to Eq. (12) for polaritons B(eff) ∼
mph/(M + mph). Since mph � M we have Mp ≈ mph, and one
concludes that for the SHEP cyclotron frequency is also ωc ∼
1/M. Therefore the cyclotron frequencies for the SHEP and
the SHEE will be almost the same order of magnitude, and
the degree to which spin currents are separated in the case of
exciton-polaritons will be approximately the same as in the
regular exciton case.

IV. SPIN HALL EFFECT FOR MICROCAVITY
POLARITONS IN THE PRESENCE OF SUPERFLUIDITY

In the dilute limit na2
2D � 1, where a2D is the 2D exci-

ton Bohr radius, at sufficiently low temperatures the Bose-
Einstein condensation of polaritons appears in the system,
and the corresponding Hamiltonian of a weakly interacting
Bose gas of microcavity polaritons with hard-core repulsion
is presented, for example, in Ref. [49]. For the simplicity one
can consider the Thomas-Fermi approximation for the polari-
ton condensate density profile in the nonquantizing effective
magnetic field B(eff)

σ . Within this approximation the polariton
condensate density profile for the system does not depend on
the effective magnetic field. The Thomas-Fermi approxima-
tion is valid if the healing length ξ [50] of polaritons is much
less than the other characteristic length parameters of the
system such as the effective magnetic length: ξ � r (eff)

B . The
healing length for polaritons ξ is given by ξ = h̄/

√
2Mpμp,

where μp is the chemical potential of weakly interacting Bose
gas of polaritons in the Bogoliubov approximation [51,52]
μp = U (0)

eff n, where U (0)
eff is the Fourier transform of the ef-

fective polariton-polariton pair repulsion potential, given by
the hard-core contact potential. In Ref. [49] U (0)

eff is defined
as U (0)

eff = 3ke2a2D/(2ε), where k = 9 × 109 N · m2/C2, ε =
ñ2 is the dielectric constant of the microcavity, and a2D =
h̄2ε/(2μexke2) is the 2D exciton Bohr radius, and μex is the
exciton reduced mass, defined as μex = me↑mh↓/(me↑ + mh↓)
and μex = me↓mh↑/(me↓ + mh↑) for A and B excitons,
correspondingly.

In experiments, the exciton density in a TMDC monolayer
was obtained up to n = 5 × 1011 cm−2 [53], and we use this
value for n in our estimations. Since 2D Bohr radius is a2DA =
3.875 Å and a2DB = 4.41 Å for A and B excitons, respectively,
one correspondingly obtains na2

2DA = 7.509 × 10−4 � 1 and
na2

2DB = 9.723 × 10−4 � 1. Therefore the polariton system
can be treated as a weakly interacting Bose gas. We estimate
the healing length as ξA = 1.947 μm and ξB = 1.825 μm for
A and B polaritons, respectively. The corresponding effective
magnetic lengths can be estimated as r (eff)

BA = 1.236 mm and
r (eff)

BB = 1.124 mm. Therefore ξA � r (eff)
BA and ξB � r (eff)

BB for A
and B polaritons, respectively, and the Thomas-Fermi approx-
imation is valid for the system under consideration.

The Bogoliubov approximation for the dilute weakly inter-
acting Bose gas of polaritons results in the sound spectrum
of collective excitations at low momenta [51,52] ε(P) =
cSP with the sound velocity [49] cS = (U (0)

eff n/Mp)
1/2 =

(3ke2a2Dn/(2εMp))1/2. Let us consider the microcavity po-
laritons at low temperatures in the presence of superfluidity
when the effective magnetic B(eff)

σ and electric E(eff) fields
are given by Eqs. (12). In the presence of superfluidity, the
polariton system has two components: superfluid and nor-
mal [51,52]. The superfluid-normal phase transition in this
2D system is the Kosterlitz-Thouless transition [54], and the
temperature of this transition Tc in a 2D microcavity polariton
system is determined as

Tc = π h̄2ns(Tc)

2kBMp
, (18)

where ns(T ) is the concentration for the superfluid component
of the polariton system [51,52] in a microcavity as a function
of temperature T , and kB is the Boltzmann constant.

The polaritons in the superfluid component do not collide,
and therefore, the scattering time of microcavity polaritons is
τ → +∞. In this case, one obtains the transport equation for
microcavity polaritons from Eq. (13), which can be rewritten
for the x- and y-components as

Mp
dvx

dt
= −ησ B(eff)vy, Mp

dvy

dt
= E (eff) + ησ B(eff)vx.

(19)

If the initial conditions for Eq. (19) are v0x = v0y = 0, the su-
perfluid polaritons will be accelerated until the system reaches
steady state, which corresponds to dvx/dt = dvy/dt = 0.
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According to Eq. (19), in the steady state vy = 0 and vx =
−E (eff)/ησ B(eff). Defining the linear superfluid polariton flow
density as j(s) = nsv, one obtains the conductivity tensor
σ̃ (s)

σ (T ) for the superfluid with the following components:

σ (s)
σxx = σ (s)

σyy = 0, σ (s)
σxy(T ) = −σ (s)

σyx(T ) = − ns(T )

ησ B(eff)
.

(20)

For the conductivity tensor σ̃ (n)
σ (T ) for the normal component,

one can use Eq. (17), substituting σ0(T ) = τnn(T )/Mp, where
nn(T ) is a 2D concentration of the normal component [51,52].
The total conductivity tensor in the presence of superfluidity
is given by σ̃ (tot)

σ (T ) = σ̃ (s)
σ (T ) + σ̃ (n)

σ (T ).
Following the procedure [51] we obtain the superfluid

density as ns(T ) = n − nn(T ) by determining the density of
the normal component nn(T ) as a linear response of the total
momentum with respect to the external velocity:

nn(T ) = 3ζ (3)

2π h̄2

k3
BT 3

c4
SMp

. (21)

Since the diagonal components of the conductivity tensor
for the superfluid component σ (s)

σxx = σ (s)
σyy equal to zero, only

the normal component contributes to the diagonal components
of the total conductivity tensor σ (tot)

σxx = σ (tot)
σyy = σ (n)

σxx = σ (n)
σyy.

In the presence of superfluidity at T < Tc, the diagonal com-
ponents of the total conductivity tensor are directly propor-
tional to the concentration of the normal component nn(T ).
The latter increases according to Eq. (21) as T 3. Thus one
can determine nn(T ) and ns(T ) by a measurement of σ (tot)

σxx
or σ (tot)

σyy at different temperatures at T < Tc. At T � Tc, the
concentration of the normal component equals to the total
concentration of polaritons. Therefore, by the measurement
of the diagonal components of the total conductivity tensor,
one can determine the Kosterlitz-Thouless phase transition
temperature Tc.

Let us mention that the components of the conductivity
tensor can be obtained via the linear polariton flow density
j, which is defined by the polariton flow. The polariton flow
is determined by the component of the total polariton mo-
mentum P‖ in the direction parallel to the Bragg mirrors. The
component P‖ can be calculated from the experimental mea-
surement of the angular intensity distribution of the photons
escaping the optical microcavity, similar to the experiment
suggested in Ref. [47]. The polariton flow was obtained ex-
perimentally recording directly the momentum distribution of
the particles by angle resolving the far-field photon emission
from the polaritons, because P‖ has a one-to-one correspon-
dence with the external angle of photon emission, which
was measured [55]. Also the polariton flow can be obtained
by using the first order spatial correlation function for a
polariton condensate, which was measured experimentally by
employing a Michelson interferometer setup [56,57].

Since at the Kosterlitz-Thouless transition temperature
T = Tc the universal jump in the superfluid concentration
occurs [54], one can determine Tc by observation of the
jumps at T = Tc in σ (tot)

σxx (T ) and σ (tot)
σxy (T ) components of

the total conductivity tensor as functions of temperature T .
This is possible, because the coefficients of proportionality
in the dependencies of σ (n)

σxy(T ) and σ (s)
σxy(T ) on nn(T ) and

ns(T ), correspondingly, are different. Besides, only the nor-
mal concentration nn(T ) contributes to σ (n)

σxx(T ) and σ (n)
σyy(T ).

Also by observation of σσxx and σσxy one can determine a
scattering time of microcavity polaritons τ by using Eq. (17).
Our calculations show that the contribution to σ (tot)

σxy (T ) and
therefore the Hall linear polariton flow density is mainly given
by the superfluid component, while the contribution from the
normal component is negligible.

Substituting Eq. (21) for the density ns of the superfluid
component into Eq. (18), one obtains an equation for the
Kosterlitz-Thouless transition temperature Tc. The solution of
this equation is

Tc =
⎡
⎣

⎛
⎝1 +

√
32

27

(
MpkBT 0

c

π h̄2n

)3

+ 1

⎞
⎠

1/3

−
⎛
⎝

√
32

27

(
MpkBT 0

c

π h̄2n

)3

+ 1 − 1

⎞
⎠

1/3⎤
⎦ T 0

c

21/3
, (22)

where T 0
c is the temperature, corresponding to vanishing

superfluid density in the mean-field approximation, when
ns(T 0

c ) = 0,

T 0
c = 1

kB

(
π h̄2nc4

s Mp

6ζ (3)

)1/3

. (23)

At the temperature T = 300 K for A polaritons, we have
obtained the total Hall linear polariton flow density in the
presence of superfluidity j (tot)

x = 8.51887 × 1013, 9.54342 ×
1013, 9.76334 × 1013, and 1.1415 × 1014 nm−1 s−1 for MoS2,
MoSe2, WS2, and WSe2, respectively. At the temperature
T = 300 K for B polaritons, we have obtained the total Hall
linear polariton flow density in the presence of superfluid-
ity j (tot)

x = 1.22581 × 1014, 1.32831 × 1014, 1.09252 × 1014,
and 1.19047 × 1014 nm−1 s−1 for MoS2, MoSe2, WS2, and
WSe2, respectively. Therefore, for A polaritons, the total
Hall linear polariton flow density is the largest for a WSe2

monolayer and the smallest for a MoS2 monolayer, while for
B polaritons, it is the largest for a MoSe2 monolayer and the
smallest for a WS2 monolayer. Also, j (tot)

x for B polaritons is
larger than for A polaritons for the same monolayer.

Let us mention that the results, presented in this section, are
applicable for A and B polaritons. A polaritons are formed via
A excitons coupled to microcavity photons, and B polaritons
are formed via B excitons coupled to microcavity photons,
correspondingly. The effective masses of A and B excitons
in a TMDC heterostructure are given by MA = me↑ + mh↓
and MB = me↓ + mh↑, where me↑(↓) is the effective mass of
spin-up (spin-down) electrons from the conduction band and
mh↑(↓) is the effective mass of spin-up (spin-down) holes from
the valence band, correspondingly. In our formulas above we
assume that for A and B excitons mass M should be replaced
by MA and MB, respectively. Correspondingly, the polariton
effective mass Mp should be replaced by MpA and MpB for A
and B polaritons, respectively.
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V. ON THE OBSERVATION OF SHEP

The observation of the SHEP in TMDC is related to the
measurement of the shift of the angular distribution of the
photons escaping the optical microcavity due to the effective
gauge magnetic and electric fields acting on polaritons. In the
absence of the effective gauge magnetic and electric fields, the
angular distribution of the photons escaping the microcavity
is central-symmetric with respect to the perpendicular to
the Bragg mirrors. In order to analyze the deflection of the
polariton flow in the (x, y) plane of the microcavity due to the
SHEP one can measure the average tangent of the angle α of
deflection for the polariton flow, defined as

tan α =
∣∣∣∣ jx

jy

∣∣∣∣ =
∣∣∣∣σσxy

σσyy

∣∣∣∣. (24)

At the absence of superfluidity by substituting Eq. (17) into
Eq. (24), one obtains tan α = ωcτ . The same expression is
valid in the presence of superfluidity for the angle of deflection
of the flow of the normal component, since

tan α(n) =
∣∣∣∣∣ j (n)

x

j (n)
y

∣∣∣∣∣ =
∣∣∣∣∣σ

(n)
σxy

σ
(n)
σyy

∣∣∣∣∣ = ωcτ. (25)

Substituting l = a2/8y0, a = 10 μm, y0 = 2.5 μm, |k1| +
|k2| ≈ 3 μm−1, τ = 1.040 ps into Eq. (25), one can estimate
for WSe2, tan α(n) ≈ 10−5, and α(s) ≈ 10−3 0. Therefore the
normal component of the polariton system almost does not
deflect in the direction perpendicular to the effective gauge
electric field due to the SHEP.

The average tangent of the angle α(s) of deflection of the
flow of the superfluid component can be obtained as

tan α(s) =
∣∣∣∣∣ j (s)

x

j (s)
y

∣∣∣∣∣ =
∣∣∣∣∣σ

(s)
σxy

σ
(s)
σyy

∣∣∣∣∣ → +∞, (26)

because σ (s)
σyy = 0 according to Eq. (20). Therefore one has

α(s) = 900 for the average angle of deflection of the superfluid
component due to the SHEP.

Since the cyclotron frequency ωc for polaritons is the same
by the order of magnitude as for excitons ωc ∼ 1/M and a
scattering time of microcavity polaritons τ ∼ 10−12 s, the
deflection of the normal component of polariton flow is very
small, but is different for A and B polaritons. In contract,
as one can see from Eqs. (20) and (26) that α(s) → 900 and
is the same for all different TMDC monolayers embedded
in different microcavities. Therefore, due to the SHEP, the
A and B polariton flows are splitting. The normal compo-
nents of the A and B polariton flows are slightly deflected
in opposite directions and propagate almost perpendicularly
to the counterpropagating beams. In contrast, the superfluid
components of the A and B polariton flows are propagated
in opposite directions along the counterpropagating beams.
Thus one can separate the superfluid and normal components
of the polariton flow. Therefore, by measuring the angular
distribution of the photons escaping the optical microcavity in
the presence and absence of the effective gauge magnetic and
electric fields and determining the shift of these distributions,
one can observe the SHEP.

Note that the cause of the shift of the angular distribution
of the photons escaping from the superfluid component due
to the SHEP is different from the reason of the shift of the
angular distribution of the photons escaping from the normal
component in the polariton drag effect [47,58]. This difference
is related to the fact that the drag effect is caused only by
the excitations, while the gauge fields can influence the entire
superfluid component.

VI. POSSIBLE TECHNOLOGICAL
APPLICATIONS OF SHEP

We propose the optical switch based on microcavity po-
laritons, formed by excitons in a TMDC monolayer, in the
SHEP regime. We propose the switch for a polariton flow. We
consider the polariton system in the presence of superfluidity.
Using circular polarized pumping, one can excite both A
and B excitons in one valley simultaneously. In this case,
A and B polaritons are formed due to coupling of A and B
excitons to the microcavity photons, correspondingly. Due to
the SHEP, there will be two different by magnitude superfluid
spin Hall polariton flows perpendicular to the effective gauge
electric field in opposite directions for A and B polaritons. We
can control these two different superfluid polariton flows by
changing the concentration of excited A and/or B polaritons. A
polariton flow occurs also in the direction along the effective
gauge electric field.

Besides, one can excite either A or B polaritons once
at the time. We can switch the magnitude and direction of
superfluid polariton Hall flow perpendicular to the effective
gauge electric field by switching the frequency of laser pump-
ing, exciting either A or B polaritons. By switching from
the regime of A excitons (or A polaritons) to B excitons (or
B polaritons) or vise versa, we can switch the direction of
superfluid polariton Hall flow to the opposite one and change
the magnitude of superfluid polariton Hall flow. However, the
magnitude of this superfluid polariton flow will be different
for A and B polaritons. This magnitude of the superfluid
polariton flow can be controlled by exciting either A or B
polaritons.

VII. DISCUSSION

Another important feature of the SHEP in TMDC is that the
conductivity tensor σ̃ depends on the exciton mass M, which
is different for A and B excitons. Therefore the conductivities
and polariton flows (including Hall conductivities and Hall
flows) will have different magnitudes for A and B polaritons.
Besides, the Hall polariton flows have different directions for
A and B polaritons, since they depend on the spin orientation
factor ησ . The SHEP in TMDC differs for A and B polaritons
by twofold: (i) the polaritonic flow has different magnitudes
due to the different masses of A and B polaritons and (ii) the
Hall polariton flows will have different directions for A and B
polaritons, since they depend on the spin orientation factor.

The SHEP can be observed for both linear and circular po-
larized light pumping. For linear polarized light, the excitons,
forming polaritons, are created in both valleys K and −K. In
this case, A polaritons from valley K and B polaritons from
the −K valley will be deflected in one direction, while the
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B polaritons from the valley K and A polaritons from the
valley −K will be deflected in opposite direction. For left
circular polarized light, A and B polaritons from the valley K
will be deflected in opposite directions. Analogously, for right
circular polarized light A and B polaritons from the valley −K
will be deflected in opposite directions.

Let us mention that the EHE in monolayer MoS2 and
valley-selective spatial transport of excitons on a micrometer
scale were directly observed by polarization-resolved photo-
luminescence mapping [29]. This EHE studied in Ref. [29] is
caused by intrinsic properties of a TMDC material. While the
EHE is very important for valleytronics, the proposed SHEP
is caused by the properties of two external counterpropagating
laser beams, and, therefore, can be controlled by changing the
parameters of these laser beams. The study the possibilities of
application of the EHE [29] for microcavity polaritons will be
performed in subsequent work.

Let us discuss at this point the difference of the SHEP and
OSHEP [30,31]. The SHEP and the OSHEP [30,31] have two
cardinally different mechanisms. In the OSHEP the deflection
of polaritons appears due to the deflection of the photon com-
ponent of polaritons. The OSHEP was analyzed for polaritons,
formed by excitons in a GaAs quantum well, embedded in a
high-quality GaAs/AlGaAs microcavity [31]. The OSHEP is
controlled by the linear polarization of the laser pump [30,31].
In contrast, in the SHEP in TMDC the deflection of polaritons
appears due to the deflection of the exciton component of
polaritons. The SHEP in TMDC appears due coupling of two
spatially varying infrared laser beams to the internal levels of
the excitons in TMDC, considered for excitons in Ref. [28]. If
under linear polarized pumping required for OSHEP [30,31],
both valleys would be populated, the polaritons corresponding
to the, for example, K valley A excitons and −K valley A
excitons would deflect to different edges of cavity. In contract,
for the SHEP in TMDC the circular polarized pumping, which
creates excitons in only one chosen valley, allows to initiate
separated Hall polariton flows of A and B polaritons from
the same valley in opposite directions. The latter allows to
control the spin Hall effect in a chosen valley, which is very
useful for valleytronics. Since elastic scattering of photons by
disorder is the main scattering mechanism required for the
OSHEP [30,31], in the case of weak disorder in TMDC the
SHEP proposed in our paper is the dominant effect, because
the SHEP is not caused by disorder. Moreover, since the
SHEP can be observed for both circular and linear polarized
light pumping, in the latter case one can modulate the signals
from two counterpropagating laser beams either by changing
periodically the distance l between two laser beams or by
a rotating screen with a hole in front of the source of two
laser beams. In this case, when the signals from two laser
beams are off, the SHEP is absent and only the OSHEP is
present, while in the presence of the signals from two laser
beams the both SHEP and OSHEP are present. The latter
allows one to analyze the contribution from SHEP to the
defected flow of photons, escaping the microcavity. In this
way, the SHEP can be registered as the modulated component
of the signal. Another essential difference between the SHEP
and OSHEP is that the SHEP provides the deflection of
polariton superfluid component, while the OSHEP does not
result in deflection of the polariton superfluid component due

to the absence of the scattering of superfluid component by
disorder.

The novel 2D materials such as transition metal dichalco-
genides [1], germanene [59,60], and stanene [61] are char-
acterized by relatively large exciton binding energies and
strong spin-orbit coupling. However, in contrast to TMDC,
germanene and stanene demonstrate high exciton binding en-
ergies and strong SOC only under strong perpendicular elec-
tric field. We assume that the SHEP can occur for microcavity
polaritons, formed by excitons only in the novel 2D materials
such as either TMDCs or germanene and stanene under high
perpendicular electric field due to strong SOC. In contrast the
SHEP cannot be observed for microcavity polaritons, formed
by excitons in a semiconductor quantum well due to absence
of strong SOC. Let us mention that while we study exciton
polaritons formed by excitons in TMDCs, our approach seems
to be applicable for all novel 2D materials with strong SOC,
including germanene and stanene under high electric field.

Let us emphasize the importance of considered in this
paper spin Hall effect for polaritons. By using the SHEP,
one can control the flows of photons, and induced by SHEP
the flows of polaritons lead to flows of photons, escaping
the microcavity. So we suggest the method to control photon
flows. Another advantage of consideration of SHEP is the
possibility of observation of spin Hall effect in the superfluid
system.

VIII. CONCLUSIONS

We have proposed the spin Hall effect for microcavity
polaritons, formed by excitons in a TMDC and microcavity
photons. We demonstrated that the polariton flow can be
achieved by generation the effective gauge vector and scalar
potentials, acting on polaritons. We have obtained the compo-
nents of polariton conductivity tensor for both noninteracting
polaritons without BEC and for weakly interacting Bose gas
of polaritons in the presence of BEC and superfluidity. These
results for noninteracting polaritons are applicable for the
two-component system of A and B polaritons. We have studied
the SHEP for both superfluid and normal components. Let
us emphasize that induced by SHEP the flows of polaritons
lead to flows of photons, escaping the microcavity. Therefore
one can control the flows of photons. Another advantage
of of SHEP is the possibility of observation of spin Hall
effect in the superfluid system. For circular polarized light, we
demonstrated that due to the SHEP the polariton flows in the
same valley are splitting: the normal component of the A and
B polariton flows slightly deflect in opposite directions and
propagate almost perpendicularly to the counterpropagating
beams, while the superfluid components of the A and B
polariton flows propagate in opposite directions along the
counterpropagating beams. Thus one can separate the super-
fluid and normal components of the polariton flow. Since only
the superfluid component contributes to the polariton Hall
flow, while the normal component contributes only to the flow
almost parallel to the effective gauge electric field, the SHEP
can be employed to separate the superfluid component from
the normal component. For the linear polarized light one can
observe the same effect for the A and B polariton flows in
K and −K valleys, respectively. Observation of the SHEP in
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the presence of superfluidity can be achieved by measuring
the angles α(n) and α(s) of deflections for the normal and
superfluid polariton flows.
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APPENDIX A: THE HAMILTONIAN FOR A TMDC
EXCITON COUPLED TO TWO COUNTERPROPAGATING

GAUSSIAN LASER BEAMS

We consider two infrared laser beams linearly polarized
along the y axis, which propagate along the x axis, act-
ing on the TMDC excitons, forming polaritons. The ex-
citon ground state |g〉 ≡ |1s〉 and two low excited states
|1〉 ≡ |2py〉 and |2〉 ≡ |3py〉 were under consideration in
Ref. [28]. These two laser beams couple |g〉 to |1〉 and
|2〉, correspondingly, with equal detuning δ. Two coun-
terpropagating Gaussian laser beams are characterized by
symmetrical centers, shifted along the y axis, and spatial
profiles eE1(2)(R)〈g|ey · r|1(2)〉/h̄ = �1(2)(R)eiφ1(2) (R), where
e is the electron charge, E1(2)(R) is the external electric
field, R = (x, y) is the coordinate vector of the center of
mass of an exciton, �1 = �0 exp [−(y − y1)2/a2] and �2 =
�0 exp [−(y − y2)2/a2] are Rabi frequencies that character-
ized the beams, y1 = −y2 = y0, φ1(R) = k1x, φ2(R) = k2x.

The effective center-of-mass Hamiltonian Hσ for an ex-
citon, associated with different spin states of the conduction
band electron, forming an exciton, σ =↑ and σ =↓, in a
TMDC coupled to two coordinate dependent laser beams is
given by [28]

Hσ = 1

2M
(P − Aσ )2 + Vσ , (A1)

where P is the momentum of the center of mass of an exciton,
M = me + mh is the exciton total mass (me and mh are the
effective masses of an electron and a hole in TMDC, respec-
tively, Vσ and σ are the spin-dependent gauge scalar and vector
potential, correspondingly, which depend on R. The effective
gauge magnetic field Bσ is defined as Bσ = ∇R × Aσ . Two
counterpropagating Gaussian laser beams with the centers,
shifted along the y axis, produce a coordinate dependent gauge
field Bσ [28]:

Aσ = ησ h̄(|k1| + |k2|)
1 + e−y/l

ex, Bσ = −ησ h̄(|k1| + |k2|)
4l cosh2(y/2l )

ez,

(A2)

where η↑ = 1 and η↓ = −1 for A and B excitons, respectively,
l = a2/8y0, a = 10 μm is the beam width, y0 = 2.5 μm is the
spatial shift of two laser beams, |k1| + |k2| ≈ 3 μm−1.

Below we provide the qualitative analysis for the valid-
ity of the assumption that the exciton gauge magnetic field
Bσ (y) given by Eq. (A4) and scalar potential Vσ (y) can be
treated as coordinate independent constants. The aforemen-
tioned assumption is valid, if y is small compared with l

(l = 5 μm [28]) and y � ỹ(y), where ỹ(y) is the characteristic
length of changes in the exciton gauge magnetic field and
scalar potential, defined as

ỹ(y) =
∣∣∣∣ B(y)

dB(y)/dy

∣∣∣∣ =
∣∣∣∣ Vσ

dVσ (y)/dy

∣∣∣∣ = l

tanh
( y

2l

) , (A3)

where B(y) = |Bσ (y)|. Assuming that y does not exceed
2.5 μm [28], one obtains ỹ(y) � ỹ(2.5 μm) = 20.41 μm.
Therefore, since at y � 2.5 μm the inequality y � ỹ(y) to-
gether with the assumption about small y compared with l
hold, we assume that in our system the exciton gauge mag-
netic field Bσ (y) given by Eq. (A4) and scalar potential Vσ (y)
do not depend on coordinates and, therefore, are constants.

Assuming y/l � 1 at y � 5 μm, we expand Aσ and Bσ

in series in terms of y/l and in the first order approximation
obtain from Eq. (A2) the following:

Aσ = ησ h̄(|k1| + |k2|)
2

(
1 + y

2l

)
ex,

Bσ = −ησ h̄(|k1| + |k2|)
4l

ez, (A4)

The spin-dependent gauge scalar potential Vσ is given
by [28]

Vσ (R) = λσ + W (R), (A5)

where

λ↓ = h̄δ, λ↑ ≈ h̄δ + h̄�2

4δ
, (A6)

and � ≡ (�2
1 + �2

2)1/2. Then one obtains from Eq. (A6) the
following expression:

λ↑ ≈ h̄δ + h̄�2
0

2δ
e−2y2

0/a2
e−2y2/a2

cosh(y/2l ). (A7)

In Eq. (A5), the scalar potential W (R) is given by

W (R) = h̄2

2M
(|∇Rθ |2 + sin2 θ cos2 θ |∇Rφ(R)|2), (A8)

where θ = tan−1 (�1/�2), φ(R) ≡ φ1(R) − φ2(R). From
Eq. (A8), the following expression can be derived:

W (R) = h̄2

2M

(
4y2

0

a4
+ (|k1| + |k2|)2

4

)
1

cosh2(y/2l )
. (A9)

Since we consider two counterpropagating Gaussian laser
beams with symmetrically shifted centers along the y
axis [28], we used for derivation of Eq. (A9), the following
relation: |k1 − k2| = |k1| + |k2|. Assuming y/l � 1 at y �
5 μm, in the first order with respect to y/l , one obtains
W = const. Therefore, in our approach, we will not consider
the gauge scalar potential acting on excitons, since in the first
order with respect to y/l it results in zero scalar gauge field,
because the nonzero scalar potential occurs only in the second
order on y/l .

APPENDIX B: DIAGONALIZATION OF THE
HAMILTONIAN Ĥ BY USING UNITARY

TRANSFORMATION

We apply the quasilocal approximation which can be used
for the momenta P, obeying to the condition Pr (eff)

B � h̄,
where r (eff)

B =
√

h̄/B(eff) is the effective magnetic length, and
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B(eff) is the magnitude of the effective magnetic field, act-
ing on polaritons, defined by Eq. (12). In this quasiclassi-
cal approach, the coordinate y, entering the exciton energy
dispersion εex(P) through the gauge vector potential Aσ , is
considered to be a number parameter rather than an operator.

If one assumes Ĥexc-exc = 0, the Hamiltonian Ĥ can be di-
agonalized by using unitary transformation and can be written
as [39]

Ĥ0 =
∑

P

εLP(P) p̂†
P p̂P +

∑
P

εUP(P)û†
PûP, (B1)

where p̂†
P and û†

P, and p̂P and ûP are the Bose creation and
annihilation operators for the lower and upper polaritons,
correspondingly. The energy spectra of the lower and upper
polaritons are given by

εLP/UP(P) = εph(P) + εex(P)

2

∓ 1

2

√
(εph(P) − εex(P))2 + 4|h̄�R|2, (B2)

where the Rabi splitting between the upper and lower states at
P = 0 equals 2�R.

The operators of excitons and photons are defined
as [39]

b̂P = XP p̂P − CPûP, âP = CP p̂P + XPûP, (B3)

where XP and CP are [39]

XP = 1√
1 +

(
h̄�R

εLP (P)−εph (P)

)2
, CP =− 1√

1 +
(

εLP (P)−εph (P)
h̄�R

)2
,

(B4)

and |XP|2 and |CP|2 = 1 − |XP|2 point out the exciton and
cavity photon fractions in the lower polariton [39]. At α ≡
1/2(M−1 + (c/ñ)LC/h̄πq)P2/|h̄�R| � 1, we obtain from
Eq. (B4) the following relation: XP ≈ 1/

√
2.
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